morphological$50422$ - vertaling naar grieks
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

morphological$50422$ - vertaling naar grieks

THEORY AND TECHNIQUE FOR THE ANALYSIS AND PROCESSING OF GEOMETRICAL STRUCTURES
Morphological image processing; Morphological Image Processing; Mathematical Morphology; Morphological operations
  • The closing of the dark-blue shape (union of two squares) by a disk, resulting in the union of the dark-blue shape and the light-blue areas.
  • The dilation of the dark-blue square by a disk, resulting in the light-blue square with rounded corners.
  • A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shaped structuring element.
  • The erosion of the dark-blue square by a disk, resulting in the light-blue square.
  • The opening of the dark-blue square by a disk, resulting in the light-blue square with round corners.
  • Watershed of the gradient of the cardiac image

morphological      
adj. μορφολογικός

Definitie

Morphologist
·noun One who is versed in the science of morphology.

Wikipedia

Mathematical morphology

Mathematical morphology (MM) is a theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions. MM is most commonly applied to digital images, but it can be employed as well on graphs, surface meshes, solids, and many other spatial structures.

Topological and geometrical continuous-space concepts such as size, shape, convexity, connectivity, and geodesic distance, were introduced by MM on both continuous and discrete spaces. MM is also the foundation of morphological image processing, which consists of a set of operators that transform images according to the above characterizations.

The basic morphological operators are erosion, dilation, opening and closing.

MM was originally developed for binary images, and was later extended to grayscale functions and images. The subsequent generalization to complete lattices is widely accepted today as MM's theoretical foundation.